
Porting The Community Atmosphere Model
– Spectral Element (CAM-SE) To Hybrid

GPU Platforms

Matthew Norman (ORNL)
Richard Archibald (ORNL)

Jeffrey Larkin (Cray)

Valentine Anantharaj (ORNL)

Ilene Carpenter (NREL)
Paulius Micikevicius (Nvidia)

2

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing

–  Decades to centuries of global simulation at high resolution
–  Utilize up to 200,000 cores

• Maintained and developed by many institutions
• Comprised of (1) a dynamical core and (2) physics packages
1.  Dynamical core

(a) “Dynamics”: Solve for wind, energy, & mass
(b) Transport “tracers” (water vapor, CO2, O3, etc)

2.  Physics packages: Resolve physical phenomena not
included in dynamical core (moist convection, radiation,
chemistry, etc)

•  We used CUDA Fortran for our port

3

What is CAM-SE?

Courtesy of Ram Nair
http://www.image.ucar.edu/staff/rnair/research09.html

•  Global 14km configuration
–  240 x 240 elements per panel, 4 x 4 basis functions per element
–  Strong scales to 172,800 XT5 cores with 60% parallel efficiency
–  Target is 64 columns of elements per compute node
–  With Mozart chemistry, runs at 0.25 simulated years per day on XT5
–  About 1.2 billion degrees of freedom total

•  Cubed-Sphere grid
•  Each face divided into elements
•  Elements spanned by 4x4 nodal

basis functions
•  Only nearest-neighbor comms.

required between elements
•  26 Vertical Levels

4

Current Performance Status

!"

#"

$"

%"

&"

'"

("
)*++,-.*"/0+1"23("

)*++,-.*"/0+1"24("

•  96 x 96 elements per panel, 864 nodes, 64 elements per node
•  Only prim_advection_tracers_remap_rk2 ported so far
•  Expect 1.75x improvement over XE6 node with Fermi GPUs

5

Challenges Unique to CAM-SE

•  Throughput requirement (1–5 simulated years per day, SYPD)
•  Time-explicit simulation

–  Elements per node must decrease with grid refinement
•  Typical available threading per-GPU:

–  8 x 8 elements per GPU, 4 x 4 bases per element, 26 vertical levels
–  26,624 threads available when vertical threading possible
–  1,024 threads when vertical threading impossible (e.g., physics)

•  Why add tracers?
–  Roughly 3 million threads per GPU
–  Puts a spike in the profile to port

6

Codebase Challenges

•  Eventually, we desire use of directives
–  CUDA Fortran suitable for key kernels, but not sustainable in general

•  Even directives require extensive code changes (at first)
–  “It is often wise to represent an array of structures as a structure of

arrays” <http://developer.nvidia.com/content/openacc-directives-gpus>

–  Strided and irregular memory accesses must be contained
–  Logic which diverges over fastest varying loop indices is bad

•  A single instruction stream makes a difference

•  L1 cache unpredictable, use shared memory when possible

Cache Awareness
do s = 1 , 3!
 coefs(s,i,j,k,q,ie) = …!
enddo!

Thread Awareness: Block over i,j,k
do s = 1 , 3!
 coefs(i,j,k,s,q,ie) = …!
enddo!

7

Future Challenges

•  Must increase data-parallel work without reducing time step
–  More resolution, more uncertainty, more ensembles?
–  Use capability to allow more tracers

•  Ultimately, we need new relaxed-time-step methods
–  Typically, added moments (i.e., p-refinement) are data-parallel
–  CAM-SE: time step reduces quadratically with added moments
–  Multi-Moment, Finite-Volume methods show some promise

•  Interacting with the user community
–  Single precision in the dynamical core? In the physics?
–  Increased number of vertical levels
–  Run dynamics and physics in parallel (slightly loosen coupling)

